8,373 research outputs found

    Approximate Message Passing-based Compressed Sensing Reconstruction with Generalized Elastic Net Prior

    Get PDF
    In this paper, we study the compressed sensing reconstruction problem with generalized elastic net prior (GENP), where a sparse signal is sampled via a noisy underdetermined linear observation system, and an additional initial estimation of the signal (the GENP) is available during the reconstruction. We first incorporate the GENP into the LASSO and the approximate message passing (AMP) frameworks, denoted by GENP-LASSO and GENP-AMP respectively. We then focus on GENP-AMP and investigate its parameter selection, state evolution, and noise-sensitivity analysis. A practical parameterless version of the GENP-AMP is also developed, which does not need to know the sparsity of the unknown signal and the variance of the GENP. Simulation results with 1-D data and two different imaging applications are presented to demonstrate the efficiency of the proposed schemes

    Triangle singularity in the J/ψ→K+K−f0(980)(a0(980))J/\psi \rightarrow K^+ K^- f_0(980)(a_0(980)) decays

    Full text link
    We study the J/ψ→K+K−f0(980)(a0(980))J/\psi \rightarrow K^+ K^- f_0(980)(a_0(980)) reaction and find that the mechanism to produce this decay develops a triangle singularity around Minv(K−f0/K−a0)≈1515M_{\rm inv}(K^- f_0/K^- a_0) \approx 1515~MeV. The differential width dΓ/dMinv(K−f0/K−a0)d\Gamma / dM_{\rm inv}(K^- f_0/K^- a_0) shows a rapid growth around the invariant mass being 1515~MeV as a consequence of the triangle singularity of this mechanism, which is directly tied to the nature of the f0(980)f_0(980) and a0(980)a_0(980) as dynamically generated resonances from the interaction of pseudoscalar mesons. The branching ratios obtained for the J/ψ→K+K−f0(980)(a0(980))J/\psi \rightarrow K^+ K^- f_0(980)(a_0(980)) decays are of the order of 10−510^{-5}, accessible in present facilities, and we argue that their observation should provide relevant information concerning the nature of the low-lying scalar mesons.Comment: 12 pages, 8 figures, published in EPJ

    Session-based Recommendation with Graph Neural Networks

    Full text link
    The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to make recommendations. Though achieved promising results, they are insufficient to obtain accurate user vectors in sessions and neglect complex transitions of items. To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i.e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity. In the proposed method, session sequences are modeled as graph-structured data. Based on the session graph, GNN can capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods. Each session is then represented as the composition of the global preference and the current interest of that session using an attention network. Extensive experiments conducted on two real datasets show that SR-GNN evidently outperforms the state-of-the-art session-based recommendation methods consistently.Comment: 9 pages, 4 figures, accepted by AAAI Conference on Artificial Intelligence (AAAI-19
    • …
    corecore